Automotive Exploitation Sandbox:
A Hands-on Educational Introduction to Embedded Device Exploitation

Nathaniel Boggs Ang Cui Jatin Kataria
n@redballoonsecurity.com a@redballoonsecurity.com Jj@redballoonsecurity.com
Red Balloon Security Red Balloon Security Red Balloon Security
Philippe Laulheret
philippe @redballoonsecurity.com
Red Balloon Security
Abstract e Free and publicly accessible.

Automative managers, domain experts, and inter-
ested nontechnical personnel who have traditionally
not needed to be aware of security issues, now face
the at times daunting task of familiarizing themselves
with the whole field of security knowledge. The goal
of the Automotive Exploitation Sandbox is to edu-
cate stakeholders who may not have any security back-
ground and provide hands-on exposure to automotive
attack chains with real hardware. In this paper and
the accompanying presentation, we describe the goals
and creation of the Automotive Exploitation Sandbox
along with a live demonstration. The Automotive Ex-
ploitation Sandbox will be hosted and open for free
public usage at the conclusion of the presentation at
https://sandbox.redballoonsecurity.com.

1 Goals

The goals of the Automotive Exploitation Sandbox are
twofold:

e To educate all stakeholders about what typical auto-
motive attack chains look like.

e To provide hands-on experience with real hardware.

Providing a hands-on experience requires realistic ex-
ploits. At the very least, the exploits used should be real
code exploiting a synthetic vulnerability implanted into
the device used for the sandbox. To provide further real-
ism, known existing vulnerabilities could be used. While
going into the full technical instructions sufficient to have
users write their own exploit implementations is out of
scope, part of the educational experience provided by the
Automotive Exploitation Sandbox will be overviews of
how such vulnerabilities are found and exploits are made.

In order to be accessible to all stakeholders including
management and automotive engineers, the Automotive
Exploitation Sandbox must be:

o Clearly described with instructions targeted towards
people without any particular technical or security
background.

e Remotely accessible as even the most inexpensive
hardware platforms are cost prohibitive for wide
distribution.

2 Design

The design of the Automotive Exploitation Sandbox cen-
ters around the requirements for remote accessibility as
well as to use physical hardware to achieve realism. The
first step of the design process was choosing a target de-
vice. We choose the SABRE lite board. The SABRE lite
is a relatively low cost development board with a quad
core ARM processor. Importantly, it supports QNX, a
micro kernel operating system common in automotive
devices.

Using QNX as the operating system for the Automo-
tive Exploitation Sandbox provides additional realism
over using a common consumer focused Linux operat-
ing system. With an operating system selected, the next
software required is a network server. Lighttpd provides
a simple light weight web server. In practice, many em-
bedded devices host a loosely secured web server. In
the future, other network facing services can be used to
demonstrate a larger variety of services. A command
injection vulnerability is intentionally injected into the
Lighttpd server to provide access to a user privilege level
remote shell.

With the device and software chosen, the remaining
Automotive Exploitation Sandbox design focuses on the
infrastructure required to cleanly reset the devices, se-
curely host the sandbox, and host the exploitation in-
structions. Figure 1 provides an overview of the phys-
ical design. Reseting one of the SABRE Lite boards to

Walkthrough

Web Sever SABRE Lite

Board 1

< Power Reset
Manager

TFTP

19MOg Po||04uo)) Bjowey

Boot Sever SABRE Lite

Board 2

< Network

o SABRE Lite
ower Board 3

Figure 1: Physical layout of the sandbox. Remote power
controls and remote boot via TFTP allow for a clean reset
of the boards.

a clean state requires a reliable method for restarting the
device and loading a pristine boot image. Furthermore,
such reseting must be automated. The reliable restart
is achieved by connecting all the boards to remote con-
trolled power that can be programmatically managed. To
ensure that the firmware booted is pristine and unmod-
ified, each board’s boot loader is programmed to boot
from a network TFTP server rather than local storage,
which could be modified once users obtain root access
as part of the Automotive Exploitation Sandbox experi-
ence.

Now that reseting each board is automated, the ques-
tion remains as to how often to reset a board. Ideally,
each user of the Automotive Exploitation Sandbox would
be able to reserve a particular board and have it reset once
the user finishes the sandbox exercise. Unfortunately,
this could lead to unintentional or even intentional de-
nial of service if users do not relinquish their reserved
devices. For the initial design, a simple timer is imple-
mented, with a count down displayed for each board al-
lowing users to start with a board that has sufficient time
remaining to complete the sandbox exercise before its
next scheduled reset. This approach does have the down-
side of requiring users to complete the entire exercise in
one session or being forced to start fresh. The base count
down time is set based on timing how long it took some
beta testing nontechnical users to complete the exercise.

As a sandbox with public users, the devices and net-

work must be isolated for security purposes. As shown in
Figure 1, the design includes a firewall, which is config-

ured limit traffic to the expected ports used in the direc-
tions. The servers hosting the instructions, TFTP server,
and remote power controls are all further isolated from
the actual SABRE Lite boards. This reduces the prob-
ability of a malicious user jumping from one of the in-
tentionally vulnerable sandbox devices to a server con-
trolling parts of the Automotive Exploitation Sandbox.
As a final layer of defense to protect from the scenario
where the sandbox infrastructure is compromised, the
entire firewall and network are isolated and unconnected
from any organization network.

While fully automated with the automatic reset of the
sandbox devices, if something does go wrong manual in-
tervention would be required. In order to alert the system
administration whenever such intervention is required,
an automatic monitoring system is in place. This system
monitors for both device downtime and potential abuse
alerting the system administrator in either case.

3 Exploitation Walkthrough

The accompanying presentation includes a live demon-
stration of the Automotive Exploitation Sandbox. In this
section, we will go through a brief overview of the ex-
ploitation process. The full instructions with step by step
details, command text, and even video tutorials will be
available to users via the walkthrough web server seen
in Figure 1. The core walkthrough is visualized across
Figures 2, 4, and 6.

3.1 Exercised Vulnerabilities Summary

While the following subsections will go into a more de-
tailed overview of the walkthrough that users of the Au-
tomotive Exploitation Sandbox experience, this section
provides a summary of the types of vulnerabilities cov-
ered in the walkthrough.

Command Injection A user inserts escape characters
along with their own command into a data field that is
later used to execute a server-side command thus also
executing the user’s command. A simple ping command
field taking a user specified IP address is used for this
example in the Automotive Exploitation Sandbox.

Heap Overflow A user overflows a data structure lo-
cated in the heap, which is a scratch space programs use
to store temporary information in memory, to overwrite
data that the program is relying on to determine its con-
trol flow. In order to demonstrate a wide variety of vul-
nerabilities, an Echo service that is flawed with an ex-
ploitable heap overflow is added to the device. This is an

(File System | Applications 10)
N <t Web ‘
Server = < file upload
/tmp/nc TCP/IP ‘nc’ -
@ command
2 injection
= Shell Ic
OR
UART
Secret
Data CAN heap
Vulnerable overflow
system call
Attacker
QNX Micro Kernel
. ,

Figure 2: Overview of stage 1 of the Automotive Ex-
ploitation Sandbox. The user obtains an unprivileged re-
mote shell.

alternate route to the first stage attack when a trivial com-
mand injection is not available. The crux of the problem
is to overwrite a function pointer with the system func-
tion and then invoke it on our buffer. We designed the
Echo service so as to make this attack easy. For the Au-
tomotive Exploitation Sandbox, users will be supplied
with a script that will take a command as an input and
generate a suitable curl request.

Kernel Memory Modification An arbitrary kernel
memory modification is a vulnerability class that allows
for the user to modify arbitrary kernel memory, which
can be leveraged to gain root privilege and take over the
entire device. For this exercise, the vulnerability is in-
jected as a system call that the user can leverage to gain
the kernel write primitive. System calls that fail to prop-
erly verify user input are the typical attack vector for this
type of attack chain.

3.2 Stage 1: Obtain Remote Shell

The first stage of the Automotive Exploitation Sandbox
walkthrough instructs the user on how to obtain a user
privilege remote shell on the device. Figure 2 visual-
izes this process. First, the user uploads the netcat binary
named ‘nc’ to through the normal file upload feature of
the web server. Then, using the synthetic vulnerability
introduced into the web server cgi script, the user will
inject a command to start the shell listening for remote
connections via netcat. At the end of this stage, the user
connects to the remote shell via ‘nc’ and can verify that
they are running as the user ‘nobody.” For an example of
what the remote shell looks like, see Figure 3.

MBP:~ Guest$ nc 172.254.56.221 13370

ls

ping.cgi

upload.cgil

usb_list.cgi

id

uid=99(nobody) gid=99(nobody) groups=99(nobody)

Figure 3: Example of the user connecting to the remote
shell and executing commands remotely on the device.

f File System | Applications 10)
7 Web
/; Server Use
Jtmp/ne TCP/IP vulnerable |
7/ Y system call to
modify ‘su’

@ ﬁ z A}
—‘ ‘//%u/ A -
AN z
ere v AN

Vulnerable
system call

Attacker

LQNX Micro Kernel

Figure 4: Stage 2 of the Automotive Exploitation Sand-
box. The user exploits a synthetic vulnerable system call
to modify the ‘su’ binary to bypass its password check.

3.3 Stage 2: Privilege Escalation

The second stage leads the user through the process of es-
calating from a user account to a root privileged account.
While the vulnerability exploited is a synthetic vulner-
able system call injected into the QNX kernel, similar
vulnerabilities have been reported in the past. An exploit
payload program is provided to the user that can exercise
this vulnerable system call to modify arbitrary memory.
The details of designing and writing such a payload is
left as an exercise to the user.

To escalate their user privilege, the instructions take
the user through the process of modifying the ‘su’ binary
to work without a password. The details of how an at-
tacker would reverse engineer the ‘su’ binary to figure
out where to patch the code is documented in depth in an
optional to read document. Figure 5 is an example figure
from that document showing an IDA Pro disassembly of
the ‘su’ binary password checking function. The last step
in stage 2 is for the user to use the provided payload to
modify the ‘su’ binary via their user remote shell. The
user then ends up with a root shell on the device.

3.4 Stage 3: Post Exploitation

The last stage of the Automotive Exploitation Sandbox
walks the user through post-compromise attacker actions

i)
RI, 10 ; type
RO, ={aEtcDefaule+0xC) ; mame)
sccenn
RO, #1
1oc_BO49ARE

TT
W KX]
=13
Loc_so4sase
W M, (R
3, loc_Bodsas
TT
Ee=]
FrE
1oc_so4sans
ou , Re
L get_login
o &0, 80
nax lec_BO4TARZ
r
3§
l10c_so4sanz
srE w, ms, §oxip
sz lo6_8049A08
—
T
[
Loc_soasack
®0, B4
ll- gotpwestry
4, RO
Lon R0, mapas P a
oy RL, B4
a pansword
canz #9, loc_B0esAYe
[= J[S= =
D Toc_sousmaz| (B Toe_s0awiiE|
. 39T
T =
l10e_so4sars Loe_8049A08
fuovs =, 40 &1, mpans. 6017
3 Log_sousars| B2, =(aBusE+0xC)
Re, (R3]

3
(R, #(dword_804P24C - OxBO4F248))
1)

[R3, §(dword_SOAPZSA - OxBOAFZ4E)]
(13, (dword_804F250 - Ox804F248)]
faults0xc ;

(dword, CNPREI‘ - Ox804F248))
mwordrile | -+ no pases

BEAERERIRAAEE]
EEEREERERE:

=aNOPaSI ile no password file
[R3, #(dword_BOAFISC - 0xB0SF248)]

=ab 7hin/sh
[R3, (dword_BO4F268 - 0x808F248)]
T

ol
B
.

1oc_soasars
uov

Figure 5: IDA Pro disassembly of the ‘su’ binary pass-
word verifying function.

[File System

Applications 10
V 2 Deface
<= Web Server |jmm
% TCP/IP
t

1c Capture

W)+

% confidential
| UART data
7 CAN

A Attacker
LQNX Micro Kernel)

Figure 6: Stage 3 of the Automotive Exploitation Sand-
box. The user is walked through defacing the web server
and obtaining the secret data.

including obtaining secret data and modifying the web

server content. Notably missing is installing a persistent
rootkit. This typical attacker behavior is left out of the
exercise as by design the devices are restored to a pris-
tine state each reboot so that the next user can go through
the exercise. A future version of the exercise with a sep-
arate on demand reseting of devices could provide such
a scenario. Figure 6 illustrates these two attacker goals.

The user is walked through the process of using the
same memory modifying payload to change memory in
the web server changing the content served. This lets the
user have a visual impact posting whatever text they de-
sire on the device web page. After this portion of the ex-
ercise, a number of users experience an eureka moment
seeing the effect of their actions and thus understanding
how a malicious actor can do the same. Additionally, a
secret data file is left on the device with root only read
permissions so that now with root access the user can
read the secret data.

4 Future Work

The Automotive Exploitation Sandbox could be built
upon as a testbed to measure and verify various defensive
technologies. In its current single device design, it could
provide a testing platform to demonstrate host-based
defenses. Expanding the sandbox into a multi-device
testbed could allow for firewall and network defenses
to be tested. To fully test various defenses, additional
classes of attacks and payloads will be required. Feed-
back on the Automotive Exploitation Sandbox is wel-
come at sandbox-support@redballoonsecurity.com in or-
der to further refine it and make it as useful to the com-
munity as possible.

5 Conclusion

Overall, while a fairly simple scenario, the Automotive
Exploitation Sandbox is capable of walking nontechnical
users through the typical steps of remote exploit, priv-
ilege escalation, and malicious actions to educate users
on what such processes might look like on real hard-
ware. The hands-on experience provided by the Auto-
motive Exploitation Sandbox can be an eye opening ex-
perience for users without previous security experience.
Even advanced users can also enjoy the sandbox experi-
ence as its real hardware and software allow exploration
and deviations from the standard walkthrough.

6 Access

Visit https://sandbox.redballoonsecurity.com for access.
Public access will be available after the presentation.

