Releases – Red Balloon Security https://redballoonsecurity.com/ Defend From Within Fri, 15 Mar 2024 09:07:53 +0000 en-US hourly 1 https://wordpress.org/?v=6.8.1 https://redballoonsecurity.com/wp-content/uploads/2021/11/RBS_logo_red-150x150.png Releases – Red Balloon Security https://redballoonsecurity.com/ 32 32 Hacking In-Vehicle Infotainment Systems with OFRAK 3.2.0 at DEF CON 31 https://redballoonsecurity.com/ofrak-at-defcon31/ https://redballoonsecurity.com/ofrak-at-defcon31/#respond Mon, 28 Aug 2023 21:52:49 +0000 https://redballoonsecurity.com/?p=9144

Hacking In-Vehicle Infotainment Systems with OFRAK 3.2.0 at DEF CON 31

Two weeks ago, Red Balloon Security attended DEF CON 31 in Las Vegas, Nevada. In addition to sponsoring and partnering with the Car Hacking Village, where we showed off some of our latest creations, we contributed two challenges to the Car Hacking Village Capture the Flag (CTF) competition. This competition was a “black badge CTF” at DEF CON, which means the winners are granted free entrance to DEF CON for life.

Since it’s been a little while since DEF CON ended, we figured we’d share a write-up of how we would go about solving the challenges. Alternatively, here is a link to an OFRAK Project (new feature since OFRAK 3.2.0!) that includes an interactive walkthrough of the challenge solves.

Challenge 1: Inside Vehicle Infotainment (IVI)

Description: Find the flag inside the firmware, but don’t get tricked by the conn man, etc.

CTF participants start off with a mysterious, 800MB binary called ivi.bin. The description hints that the file is firmware of some sort, but doesn’t give much more info than that. IVI is an acronym for “In Vehicle Infotainment,” so we expect that the firmware will need to support a device with a graphical display and some sort of application runtime, but it is not yet clear that that info will be helpful.

To begin digging into the challenge, the first thing we do is to unpack the file with OFRAK. Then, we load the unpacked result in the GUI for further exploration.

				
					# Install OFRAK
python3 -m pip install ofrak ofrak_capstone ofrak_angr

# Unpack with OFRAK and open the unpacked firmware in the GUI
ofrak unpack --gui --backend angr ./ivi.bin

				
			

When the GUI opens, we see that the outermost layer that has been unpacked is a GZIP. By selecting the only child of the GZIP in the resource tree, and then running “Identify,” we can see that OFRAK has determined that the decompressed file is firmware in Intel Hex format.

Luckily, OFRAK has an Intel Hex unpacker built-in, so we can unpack this file to keep digging for the flag.

OFRAK unpacks the Ihex into an IhexProgram. At this point, we’re not sure if what we’re looking at is actually a program, or is a file that can unpack further. Looking at the metadata from OFRAK analysis in the bottom left pane of the GUI, we note that the file has only one, large segment. This suggests that it is not a program, but rather some other file packed up in IHEX format.

If we run “Identify” on the unpacked IhexProgram, OFRAK confirms that the “program” is actually GZIP compressed data.

To gather more information, we can make OFRAK run Binwalk analysis. This will happen automatically when clicking the “Analyze” button, or we can use the “Run Component” button to run the Binwalk analyzer manually.

Binwalk tends to have a lot of false positives, but in this case, it confirms that this resource is probably a GZIP. Since we know this, we can use the “Run Component” interface to run the GzipUnpacker and see what is inside.

Running “Identify” on the decompressed resource shows that there was a TAR archive inside. Since OFRAK can handle this easily, we click “Unpack” on the TAR. Inside of the archive, there are three files:

  • qemu.sh
  • bzImage
  • agl-ivi-demo-platform-html5-qemux86-64.ext4
 

The first file is a script to emulate the IVI system inside QEMU. The second file is the kernel for the IVI system. And the third file is the filesystem for the IVI.

Based on the bzImage kernel, the flags for QEMU in the script, and the EXT4 filesystem format, we can assume that the IVI firmware is Linux-based. Moreover, we can guess that AGL in the filename stands for “Automotive Grade Linux,” which is a big hint about what type of Linux applications we’ll encounter when we delve deeper.

Since the description talks about “conn man” and “etc,” we have a hint that it makes sense to look for the flag in the filesystem, instead of the kernel.

OFRAK has no problem with EXT filesystems, so we can select that resource and hit “Unpack” to explore this firmware further.

From here, there are two good paths to proceed. The easiest one is to use OFRAK’s new search feature to look for files containing the string flag{, which is the prefix for flags in this competition.

The second is to notice that in the hint, it mentions etc and connman, both of which are folders inside the AGL filesystem.

Navigating into the /etc/connman folder, we see a file called flag1.txt. Viewing this gives us the first flag!

flag{unp4ck_b33p_b00p_pack}

Challenge 2: Initialization Vector Infotainment (IVI)

Description: IVe heard there is a flag in the mechanic area, but you can’t decrypt it without a password… Right?

The hint provided with the challenge download makes it clear that this second challenge is in the same unpacked firmware as the first one. As such, the natural first step is to go looking for the “mechanic area” to find the flag.

One option is to use the qemu.sh script to try and emulate the IVI. Then it might become apparent what the description means by “mechanic area.” However, this is not necessary if you know that “apps” for Automotive Grade Linux are stored in /usr/wam_apps/<app name> in the filesystem.

Navigating directly to that directory, we can see that there is an app called html5-mecharea. One subdirectory of that folder is called chunks, and contains many files with the name flag.XXX.png. This is a pretty good hint that we’re on the right track.

The only problem is that if we try to view any of those PNG files, they appear corrupted.

Poking around the folder a bit more, we see two useful files: create.go, and app/src/App.svelte. It looks like create.go was used to break an image with the flag into chunks, and then encrypt them separately. App.svelte is responsible for taking a password from a user, and using that to try and decrypt the chunks into a viewable image.

create.go seems to be a Golang program to generate a (truly) random password string, use PBKDF2 to generate an AES key from the password, generate a truly random IV, break an image into 1024-byte chunks, encrypt each chunk with AES in OFB mode using the same key and IV, and then dump the encrypted chunks to disk.

Similarly, App.svelte does the inverse process: get a passphrase from a user, do PBKDF2 key derivation, load chunks of an image and try to decrypt them, then concatenate and display the decrypted result.

Looking at these two source files, it’s not apparent that the implementation of randomness or the crypto functions themselves are unsafe. Instead, the most eyebrow-raising aspect (as hinted by the challenge description and title) is the reuse of the same key and Initialization Vector for every chunk of plaintext.

In the OFB mode of AES, the key and IV are the inputs to the AES block cipher, and the output is chained into the next block. Then all of the blocks are used as the source of randomness for a one-time pad. Specifically, they are XORed with the plaintext to get the ciphertext. In other words, the same key and IV generate the same “randomness,” which is then XORed with each plaintext chunk to make a ciphertext chunk.

One fun feature of the XOR function is that any value is its own inverse under XOR. The XOR function is also commutative and associative. This means that the following is true if rand_1 == rand_2, which they will be because the same key and IV generate the same randomness:

cipher_1 XOR cipher_2 == (plain_1 XOR rand_1) XOR (plain_2 XOR rand_2) 
                      == (plain_1 XOR plain_2) XOR (rand_1 XOR rand_2) 
                      == (plain_1 XOR plain_2) XOR 0000000 ... 0000000
                      == plain_1 XOR plain_2

To reiterate: the resuse of the same key and IV tell us that the rand_N values will be the same for all of the ciphertexts. This tells us that the result of XORing any two ciphertexts together (when the same key and IV are used in OFB mode) is the two plaintexts XORed together.

Luckily, based on a closer inspection of the source, one of the chunks is saved unencrypted in the chunks folder. This is used in the code for determining if the passphrase is correct, and that the beginning of the image was successfully decrypted. But we can use it to XOR out the resulting parts of the plaintext. Therefore, we are able to do the following for every ciphertext chunk number N to eventually get back all of the plain text:

plain_1 XOR cipher_1 XOR cipher_N == plain_1 XOR (plain_1 XOR plain_N)
(by above reasoning) == (plain_1 XOR plain_1) XOR plain_N == 00000000 ... 00000000 XOR plain_N == plain_N

The last step is to write a little code to do this for us. A simple solution in Golang is included below, but should be straightforward to do in your favorite programming language.

				
					package main

import (
	"crypto/aes"
	"crypto/subtle"
	"os"
	"sort"
)

func main() {
	outfile, _ := os.Create("outfile.png")

	os.Chdir("chunks")
	chunkdir, _ := os.Open(".")
	filenames, _ := chunkdir.Readdirnames(0)
	sort.Strings(filenames)

	var lastEncrypted []byte = nil
	lastDecrypted, _ := os.ReadFile("flag.unencrypted.png")
	for _, filename := range filenames {
		if filename == "flag.unencrypted.png" {
			continue
		}

		data, _ := os.ReadFile(filename)
		encryptedData := data[aes.BlockSize:]
		xorData := make([]byte, len(encryptedData))

		if lastEncrypted != nil {
			outfile.Write(lastDecrypted)
			subtle.XORBytes(xorData, encryptedData, lastEncrypted)
			subtle.XORBytes(lastDecrypted, lastDecrypted, xorData)
		}

		lastEncrypted = encryptedData
	}

	outfile.Write(lastDecrypted)
	outfile.Close()
}

				
			

When we do this and concatenate all of the plaintexts in the right order, we get a valid PNG image that contains the flag.

flag{cr4sh_syst3ms_n0t_c4rs}

Brief Tour of OFRAK 3.2.0

In the meantime, we published OFRAK 3.2.0 to PyPI on August 10!

 

As always, a detailed list of changes can be viewed in the OFRAK Changelog.

 

We’ve had several new features and quality of life improvements since our last major release.

Projects

OFRAK 3.2.0 introduces OFRAK Projects. Projects are collections of OFRAK scripts and binaries that help users organize, save, and share their OFRAK work. Acessable from the main OFRAK start page, users can now create, continue or clone an OFRAK project with ease. With an OFRAK Project you can run scripts on startup, easily access them from the OFRAK Resource interface, and link them to their relavent binaries. Open our example project to get started and then share your projects with the world, we can’t wait to see what you make!

Search Bars

OFRAK 3.2.0 also introduces a long awaited feature, search bars. Two new search bars are available in the OFRAK Resource interface, one in the Resource Tree pane, and one in the Hex View pane. Each search bar allows the user to search for exact, case insensitive, or regular expression strings and bytes. The Resource Tree search bar will filter the tree for resources containing the search query while the Hex View search bar will scroll to and itereate on the instances of the query. The resource search functionality is also available in the python API using resource.search_data.

Additional Changes

  • Jefferson Filesystem (JFFS) packing/repacking support.
  • Intel Hex (ihex) packing/repacking support (useful for our Car Hacking Village DEFCON challenges).
  • EXT versions 2 – 4 packing/repacking support.

Learn More at OFRAK.COM

]]>
https://redballoonsecurity.com/ofrak-at-defcon31/feed/ 0 9144
Brief Tour of OFRAK 3.1.0 https://redballoonsecurity.com/ofrak-310/ https://redballoonsecurity.com/ofrak-310/#respond Mon, 19 Jun 2023 17:49:20 +0000 https://redballoonsecurity.com/?p=9088

Brief Tour of OFRAK 3.1.0

We published OFRAK 3.1.0 to PyPI on June 12, 2023!

As always, a detailed list of changes can be viewed in the OFRAK Changelog.

We’ve had several new features and quality of life improvements since our last major release.

Themes, Colors, and Settings

In OFRAK 3.1.0 we’ve added a new settings window. From here you can switch to “dark mode” or “light mode,” and customize any color in the OFRAK GUI. In addition to the customization features, we’ve added some more advanced settings described below.

Experimental OFRAK Features

OFRAK 3.1.0 now gives you access to new, experimental features. Selecting “Enable Experimental OFRAK Features” in the settings pane will enable new toolbar buttons. “So, what are experimental features?” you might ask. Experimental features are the latest and greatest OFRAK changes. But beware! They might be buggier than other parts of OFRAK, and are subject to change in later versions. We are including two new, experimental OFRAK features in this release: running any component in the GUI, and running pre-recorded scripts in the GUI.

Run Component

In the past, the OFRAK GUI only had a limited subset of the full suite of OFRAK Components available. Now, with the new Run Component feature, you have access to every OFRAK component on your system. When selecting which component to run, you can filter by type (Unpacker, Analyzer, Modifier, and Packer), and by target tags. Selecting a component will reveal the ComponentConfig so you can fill in the necessary parameters and start using the full power of OFRAK.

Run Script

In our last update, we gave you the ability to generate a script based on your actions. In OFRAK 3.1.0 you can now run those scripts directly in the GUI. Take your generated script, make modifications to it, or even totally rewrite it, then run the script, and see what effect it has on your binary live in the OFRAK GUI using this new, experimental feature.

Additional Features

Along with the major new features above, we have these new minor features in OFRAK 3.1.0.

  • ElfLoadAlignmentModifier finds free space in a binary between adjacent PT_LOAD segments.

  • Select an alternative backend server in the settings pane under “developer options” instead of modifying backendUrl in stores.js.

  • Copy your generated script directly to the clipboard with a new button option.

  • Navigate the OFRAK GUI resource tree with a USB Dance Dance Revolution pad.

Bug Fixes

The following bug fixes are also included in OFRAK 3.1.0.

  • Taking an action too soon after loading a large file no longer causes the OFRAK GUI to freeze.

  • importlib-metadata bumped to version 4.1.3.

  • libmagic and strings tagged as internal dependencies.

  • The minimap will no longer overlap the version number in the OFRAK GUI.

Learn More at OFRAK.COM

]]>
https://redballoonsecurity.com/ofrak-310/feed/ 0 9088
DEF CON 30 Badge Fun with OFRAK https://redballoonsecurity.com/def-con-30-badge-fun-with-ofrak/ Wed, 24 Aug 2022 18:01:28 +0000 https://redballoonsecurity.com/?p=7215

DEF CON 30 Badge Fun with OFRAK

The TL;DR? We used OFRAK to rewrite the badge firmware so that it auto-plays the solution for Challenge 1.

Est. read time: 20 min read

The code referenced in this writeup can be found here.

 

 

DEF CON 30 just ended, and the badge this year was awesome. It included a playable synthesizer with a few instrument presets, as well as buttons, a screen, and a small speaker. Everything on the badge was driven by a Raspberry Pi Pico. As usual, the badge also had an associated reverse engineering challenge.

 

 

Several of us from Red Balloon Security attended and manned  booths in the Aerospace Village and Car Hacking Village. Many of our demos were based on OFRAK, which we released publicly at DEF CON 30. Since OFRAK is a binary reverse engineering and modification platform, it naturally became our tool of choice for badge firmware modification.

 

 

This post walks through using OFRAK to modify the DEF CON 30 Badge firmware in fun and exciting ways. We are unabashedly building off of this great write-up@reteps, we owe you a beer! (Or a ginger ale, since it seems like you may not be old enough to drink just yet.)

 

This write-up is long, so feel free to skip ahead to the parts that interest you:

Table of Contents

Set up OFRAK

To walk through this writeup with us, you will need to install picotool and ofrak. Run these steps in the background while you read the rest of this document.

For this writeup, we used the redballoonsecurity/ofrak/ghidra Docker image.

  1. Make sure you have Git LFS set up.

    which git-lfs || sudo apt install git-lfs || brew install git-lfs
    git lfs install
  2. Clone OFRAK.

    git clone https://github.com/redballoonsecurity/ofrak.git
    cd ofrak
  3. Install Docker.

  4. Build an OFRAK Docker image with Ghidra. This will take several minutes the first time, but should be quick to rebuild later on. Continue reading and come back when it is finished!

    # Requires pip
    python3 -m pip install --upgrade PyYAML
    
    DOCKER_BUILDKIT=1 \
    python3 build_image.py --config ./ofrak-ghidra.yml --base --finish

    Check it is installed by looking for redballoonsecurity/ofrak/ghidra near the top of the output of the following command.

    docker images
  5. Run an OFRAK Docker container. These instructions have more information about running OFRAK interactively.

    mkdir --parents ~/dc30_badge
    
    docker run \
      --rm \
      --detach \
      --hostname ofrak \
      --name ofrak \
      --interactive \
      --tty \
      --publish 80:80 \
      --volume ~/dc30_badge:/badge \
      redballoonsecurity/ofrak/ghidra:latest
  6. Check that it works by going to http://localhost. You should see the OFRAK GUI there.

We use picotoolto export the firmware image.

  1. Install the dependencies. For example, on Ubuntu:

    sudo apt install build-essential pkg-config libusb-1.0-0-dev cmake make
    
    git clone https://github.com/raspberrypi/pico-sdk.git
    git clone https://github.com/raspberrypi/picotool.git
  2. Build picotool.

    pushd picotool
    mkdir --parents build
    cd build
    PICO_SDK_PATH=../../pico-sdk cmake ..
    make -j
    sudo cp picotool /usr/local/bin/
    popd

You can now use picotool to export the firmware image from the device. To do this, the badge must be in BOOTSEL. To put the badge in BOOTSEL, hold down the badge’s down button while powering the device, or short the J1 pins on the back with a jumper wire. You can now connect the device to your computer over micro USB.

If you have done this correctly, running picotool should give the following output:

				
					$ sudo picotool info -a
Program Information
 name:          blink
 description:   DEF CON 30 Badge
 binary start:  0x10000000
 binary end:    0x100177cc

Fixed Pin Information
 0:   UART0 TX
 1:   UART0 RX
 25:  LED

Build Information
 sdk version:       1.3.0
 pico_board:        pico
 boot2_name:        boot2_w25q080
 build date:        Jul 17 2022
 build attributes:  Debug

Device Information
 flash size:   2048K
 ROM version:  3
				
			

You can now dump the badge firmware as a raw binary file, badge_fw.bin, using the following command:

				
					mkdir --parents ~/dc30_badge
sudo picotool save -a -t bin ~/dc30_badge/badge_fw.bin
				
			

Insert logo with OFRAK GUI

First things first – let’s replace the DEF CON logo that appears when the badge is powered on with an OFRAK logo!

1. Load the image into the OFRAK GUI.

2. We know from the reteps writeup that the DEF CON logo is at offset 0x13d24, so we can use the “Carve Child” feature in the OFRAK GUI to unpack it as a separate resource.

 

Carve from offset 0x13d24 with a size of 80 by 64 pixels, each of which is stored in a single bit (so divide by 8 to get the number of bytes).

3. Download the child and verify that it’s the correct range by loading it in GNU Image Manipulation Program (GIMP).

Looks good!

 

4. Download this pre-built OFRAK Logo from here, or expand more information about building a custom image below.

  1. For making a custom image, first, create a new canvas and load your image as a layer resized for the canvas.


  2. Load your image, and resize it and invert the colors if necessary. The OFRAK Logo is a great candidate image.


  3. Convert the image to 1-bit color depth with dithering. (For more about dithering, check out this article.)




  4. Merge all the layers into one by right-clicking in the layers pane on the left.




  5. Export the image with Ctrl+Shift+E (Cmd on Mac), or use File > Export As.... Pick PNG.



  6. Convert the PNG to raw 1-bit data with ImageMagick, based on the instructions here.

    # Install ImageMagick if you don't have it
    which convert || sudo apt install imagemagick || brew install imagemagick
    
    # Convert the image
    convert myimage.png -depth 1 GRAY:shroomscreen.bin
    
    # Verify that it is 640 bytes
    wc -c shroomscreen.bin

5. Use the OFRAK GUI “Replace” feature to replace the data.

6. Pack the whole thing back up.

7. Download the resulting firmware image and flash it onto the device.

				
					cp "$(ls -rt ~/Downloads | tail -n 1)" ~/dc30_badge/ofrakked.bin
sudo picotool load ~/dc30_badge/ofrakked.bin

				
			

8. Verify that it works by booting up the badge.

Looks good!

We can now automate this step in future firmware mods by using the following Python function:

				
					async def ofrak_the_logo(resource: Resource):
      """
      Replace the DEF CON logo with OFRAK!
      """
      logo_offset = 0x13d24
      ofrak_logo_path = "./shroomscreen.data"
      with open (ofrak_logo_path, "rb") as f:
          ofrak_logo_bytes = f.read()
      resource.queue_patch(Range.from_size(logo_offset, len(ofrak_logo_bytes)), ofrak_logo_bytes)
      await resource.save()
				
			

Change some strings

It is easy to use OFRAK to change strings within the badge firmware. The function ofrak_the_strings (listed below) changes the “Play” button on the badge’s menu to display “OFRAK!” and hijacks the credits, giving credit to OFRAK mascots (“mushroom”, “caterpillar”) and “rbs.”

				
					async def ofrak_the_strings(resource: Resource):
        """
        Change Play menu to OFRAK!

        Update credits to give credit where due
        """
        # First, let's overwrite Play with "OFRAK!"
        await resource.run(
            StringFindReplaceModifier,
            StringFindReplaceConfig(
                "Play",
                "OFRAK!",
                True,
                True
            )
        )
        # Let's overwrite credits with OFRAK animal names
        await resource.run(
            StringFindReplaceModifier,
            StringFindReplaceConfig(
                "ktjgeekmom",
                "mushroom",
                True,
                False
            )
        )
        await resource.run(
            StringFindReplaceModifier,
            StringFindReplaceConfig(
                "compukidmike",
                "caterpillar",
                True,
                False
            )
        )
        await resource.run(
            StringFindReplaceModifier,
            StringFindReplaceConfig(
                "redactd",
                "rbs",
                True,
                False
            )
        )
				
			

Press any key to win Challenge 1

OK, now on to Challenge 1! For those of you who didn’t participate in BadgeCon: You win Challenge 1 on the DEF CON Badge if you play the melody to Edward Grieg’s Peer Gynt.

 

Peer Gynt is nice, but some of us can’t play the piano (or are too lazy). We want to win Challenge 1 without any musical skills/effort.

 

The reteps writeup points us to a two-byte binary patch that does just that. The ofrak_challenge_one function below patches the badge firmware such that pressing any key wins Challenge 1!

				
					async def ofrak_challenge_one(resource: Resource):
      """
      Win challenge 1 by pressing any key!
      """
      check_challenge_address = 0x10002DF0
      win_address = 0x10002E20
      jump_asm = f"b {hex(win_address)}"
      jump_bytes = await assembler_service.assemble(
          jump_asm, check_challenge_address + 4, ARCH_INFO, InstructionSetMode.THUMB
      )

      await resource.run(
          BinaryInjectorModifier,
          BinaryInjectorModifierConfig([(0x10002DF0 + 4, jump_bytes)]),
      )
				
			

You’re welcome.

Autoplay Notes (Piano Player) to win Challenge 1

Jumping right to the win condition is fun and all, but isn’t half the fun of the badge that it makes sounds? What if we could just have it… make sounds? Sounds that happen to make us win?

 

The goal of this section is to use OFRAK to patch the badge firmware into “Player Piano” mode: When you start Challenge 1, the badge autoplays Peer Gynt for you and you win. This is not too complicated, but it requires us to put on our Reverse Engineer hats and dig deeper into the firmware.

 

Step 1: Reverse Engineering

The first step was to pull the firmware and throw it into Ghidra. Luckily, we didn’t have to start from scratch.

 

Step 0: Plagiarize Survey the Literature

Shoutout (again) to the reteps writeup, which was a great starting point. If he shared his Ghidra project, we didn’t see it, but in his writeup we could see one important function labeled and with a full address! What he called z_add_new_note_and_check at 0x10002df0, we called check_challenge, but it does the same thing either way. That was essentially our starting point, from which all other analysis stemmed.

Step 1v2: Reverse Engineering

Our first approach was looking at code xrefs to check_challenge since A) that was our foothold and we did not have any other good starting points, and B) the latest note played was passed to this function, so it seemed to make sense to trace that data flow and find out how the latest note played is read. Then, in theory, we could write a new note there programmatically. The immediate problem was that most usages of check_challenge were in a function we affectionately called big_chungus because it was large and hard to understand. The decompilation looked like this:

Which was essentially unusable except in very local instances.

 

The next approach we took was looking at strings. We quickly found some interesting strings we had seen on the screen, so we followed those references and found a number of functions related to drawing pixels (below screenshot shows them after they were labeled):

This led to the functions that drew each of the menus, which gave us a good idea of the state machine that the firmware uses. Throughout the process, we used OFRAK to experiment with different hypotheses by injecting bits of assembly to poke at addresses. For example:

				
					async def overwrite_state_pointers(resource):
    # Effect: main menu does not change image when i move to different options
    # (they are still selected, as we can click through them)
    new_state_pointer_bytes = struct.pack("<i", 0x1000544c)
    resource.run(
        BinaryInjectorModifier,
        BinaryInjectorModifierConfig(
            [
                (0x1000e1a0, new_state_pointer_bytes),
                (0x1000e1a4, new_state_pointer_bytes),
                (0x1000e1a8, new_state_pointer_bytes),
                (0x1000e1ac, new_state_pointer_bytes),
                (0x1000e1b0, new_state_pointer_bytes),
            ]
        ),
    )
    
    
async def main(ofrak_context):
    root_resource = await ofrak_context.create_root_resource_from_file(BADGE_FW)
    
    root_resource.add_tag(Program)
    root_resource.add_attributes(arch_info)
    root_resource.add_view(MemoryRegion(START_VM_ADDRESS, FIRMWARE_SIZE))

    await root_resource.save()

    await overwrite_state_pointers(root_resource)
    
    # And other experiments...

    await root_resource.save()
    await root_resource.flush_to_disk(OUTPUT_FILE)
				
			

This helped us to confirm or reject these hypotheses. It was also just fun to change the behavior. We used this function to change all of the keys’ associated light colors to green, since the code for that is all in a big regularly-patterned block and we could iterate over it at constant offsets:

				
					async def set_all_key_lights(resource, rgb):
      first_color_load_vaddr = 0x10004cf0
      color_loads_offset = 0xe

      set_red_instr = f"movs r0, #0x{rgb[0]:x}"
      set_green_instr = f"movs r1, #0x{rgb[1]:x}"
      set_blue_instr = f"movs r2, #0x{rgb[2]:x}"

      mc = await assembler_service.assemble(
          "\n".join([set_blue_instr, set_green_instr, set_red_instr]),
          first_color_load_vaddr,
          arch_info,
          InstructionSetMode.THUMB,
      )
      
      resource.run(
          BinaryInjectorModifier,
          BinaryInjectorModifierConfig(
              [
                  (color_load_vaddr, mc)
                  for color_load_vaddr in range(first_color_load_vaddr, 0x10004dc2, color_loads_offset)
              ]
          ),
      )
				
			

After mucking around for a while, we were not completely sure we had found the “source” of the notes. We had some ideas, though they would require more complex experiments, which would be cumbersome to write in assembly. At this point, we decided to set up the OFRAK PatchMaker for the badge firmware.

Step 2: PatchMaker

The PatchMaker is a Python package for building code patch blobs from source and injecting them into an executable OFRAK resource. In this case, we wanted to be able to “mod” the badge firmware by just writing out some C code with full access to the existing functions and data already in the device.

 

The first step is to set up the toolchain configuration:

				
					
TOOLCHAIN_CONFIG = ToolchainConfig(
    file_format=BinFileType.ELF,
    force_inlines=False,
    relocatable=False,
    no_std_lib=True,
    no_jump_tables=True,
    no_bss_section=True,
    compiler_optimization_level=CompilerOptimizationLevel.SPACE,
    check_overlap=True,
)
TOOLCHAIN_VERSION = ToolchainVersion.GNU_ARM_NONE_EABI_10_2_1
				
			

This is pretty standard stuff for C-patching an existing firmware. We decided to use the PatchFromSourceModifier to do that actual patching, as it hides some of the nitty-gritty of building a patch (though it consequently has fewer options than going through the core PatchMaker API).

The next step is to define the symbols that can be used from the patch source code. These need to be exposed to PatchMaker by adding some LinkableSymbol data structure to the existing Program:

				
					LINKABLE_SYMBOLS = [
    # Existing variables in binary
    LinkableSymbol(0x20026eea, "notes_held_bitmap", LinkableSymbolType.RW_DATA, InstructionSetMode.NONE),
    LinkableSymbol(0x200019d8, "octave", LinkableSymbolType.RW_DATA, InstructionSetMode.NONE),
    LinkableSymbol(0x20001991, "most_recent_note_played", LinkableSymbolType.RW_DATA, InstructionSetMode.NONE),
    LinkableSymbol(0x200063d8, "notes_played", LinkableSymbolType.RW_DATA, InstructionSetMode.NONE),
    LinkableSymbol(0x20026f01, "instrument", LinkableSymbolType.RW_DATA, InstructionSetMode.NONE),

    # Existing functions in binary
    LinkableSymbol(0x10005074, "draw_rect_white", LinkableSymbolType.FUNC, InstructionSetMode.THUMB),
    LinkableSymbol(0x10004fc4, "write_character", LinkableSymbolType.FUNC, InstructionSetMode.THUMB),
    LinkableSymbol(0x1000503c, "write_text", LinkableSymbolType.FUNC, InstructionSetMode.THUMB),

]

# ... Then later add to resource with:

await resource.run(
        UpdateLinkableSymbolsModifier,
        UpdateLinkableSymbolsModifierConfig(tuple(LINKABLE_SYMBOLS)),
    )
    

				
			

And they need to be exposed to the C code by declarations, as one might normally see in a header:

				
					#include <stdint.h>

extern uint16_t notes_held_bitmap;
extern uint8_t octave;
extern uint8_t most_recent_note_played;
extern uint8_t notes_played[];
extern uint8_t instrument;

extern void draw_rect_white(unsigned int x, unsigned int y, unsigned int x_end, unsigned int y_end);
extern void write_character(char c, int x, int y, int color); // 0=white, 1=black
extern void write_text(const char* str, int x, int y, int color); // 0=white, 1=black
				
			

Then we could write some C code referencing those; no spoilers though, we’ll show that code later! To actually build it, we create an empty root resource to hold the source code and run PatchFromSourceModifier:

				
					async def patch_in_function(ofrak_context, root_resource: Resource):
      """
      Patch in the auto-player that plays the sequence to solve challenge 1.
      """
      # Not strictly necessary, but nice to really clear all "free space"
      await overwrite_draw_volume_info(resource)

      source_bundle_r = await ofrak_context.create_root_resource(
          "", b"", tags=(SourceBundle,)
      )
      source_bundle: SourceBundle = await source_bundle_r.view_as(SourceBundle)
      with open(PATCH_SOURCE, "r") as f:
          await source_bundle.add_source_file(f.read(), PATCH_SOURCE)

      await resource.run(
          UpdateLinkableSymbolsModifier,
          UpdateLinkableSymbolsModifierConfig(tuple(LINKABLE_SYMBOLS)),
      )

      await resource.run(
          PatchFromSourceModifier,
          PatchFromSourceModifierConfig(
              source_bundle_r.get_id(),
              {
                  PATCH_SOURCE: (
                      Segment(
                          ".text",
                          DRAW_VOLUME_RANGE.start,
                          0,
                          False,
                          DRAW_VOLUME_RANGE.length() - 0x50,
                          MemoryPermissions.RX,
                      ),
                      Segment(
                          ".rodata",
                          DRAW_VOLUME_RANGE.end - 0x50,
                          0,
                          False,
                          0x50,
                          MemoryPermissions.R,
                      ),
                  ),
              },
              TOOLCHAIN_CONFIG,
              TOOLCHAIN_VERSION,
          ),
      )
				
			

The source bundle resource ID, the TOOLCHAIN_CONFIG, and TOOLCHAIN_VERSION were already explained but what about the Segments?

 

Step 3: Free Space & Segments

 

In order to inject code, we obviously need a location to inject it into. There are three options for how to obtain this:

 

  1. Find some unused space in the binary.
  2. Enlarge/extend the firmware binary so more bytes are loaded into memory.
  3. Replace something that already exists in the binary.

 

These are roughly ordered from “best” to “worst.” Ideally we want to change as little possible in the binary. In this situation though, we were limited to the third option:

 

  1. We did not have complete knowledge of the binary and could not say with 100% confidence that some part was unused (this is usually the case).
  2. We did not yet have an OFRAK packer/unpacker for uf2, the file format the binary was in.

 

So the next task was to choose something to overwrite. We found the function that drew the little volume slider on the side, and this seemed a good choice because:

 

  • It would free up a decent amount of space (over 256 bytes to drop THUMB code in).
  • It was called often and consistently (alongside other screen-updating code).
  • Removing it would give us some real estate on the right edge of the screen to write/draw new stuff to!

 

We verified that this would have no ill effects by gutting the contents of the function with nop instructions:

				
					async def overwrite_draw_volume_info(resource):
      """
      Creates free space! But you no longer get to see the current volume and the nice arrows
      telling you which way to adjust it.
      """
      # Creates free space! But you no longer get to see the current volume
      # and the nice arrows telling you you can adjust it

      return_instruction = await assembler_service.assemble(
          "mov pc, lr",
          DRAW_VOLUME_RANGE.end - 2,
          ARCH_INFO,
          InstructionSetMode.THUMB,
      )

      nop_sled = await assembler_service.assemble(
          "\n".join(
              ["nop"] * int((DRAW_VOLUME_RANGE.length() - len(return_instruction)) / 2)
          ),
          DRAW_VOLUME_RANGE.start,
          ARCH_INFO,
          InstructionSetMode.THUMB,
      )

      final_mc = nop_sled + return_instruction
      assert len(final_mc) == DRAW_VOLUME_RANGE.length()

      await resource.run(
          BinaryInjectorModifier,
          BinaryInjectorModifierConfig([(DRAW_VOLUME_RANGE.start, final_mc)]),
      )
				
			

If we are just patching in some compiled C patch over the existing code, NOPing it out first isn’t strictly necessary, but it is a good sanity check that removing the function is probably fine. It also verifies the function does what we think it does: The volume slider is gone!

With our target address picked out, we defined the PatchMaker Segments where our compiled code and data would be inserted:

				
					Segment(
    ".text",
    DRAW_VOLUME_RANGE.start,
    0,
    False,
    DRAW_VOLUME_RANGE.length() - 0x50,
    MemoryPermissions.RX,
),
Segment(
    ".rodata",
    DRAW_VOLUME_RANGE.end - 0x50,
    0,
    False,
    0x50,
    MemoryPermissions.R,
),

				
			

The first is for the code, and the second is a healthy allocation for read-only data, like constants and strings.

At this point we were ready to start writing some C.

Step 4: The Payload

We wrote a number of experiments in C code, experimenting with various memory addresses and functions we were investigating. C is brilliant because it is so much nicer to work in than assembly, but just as unsafe. One trick we used liberally was the ability to cast memory locations to whatever pointer type we wanted: this allowed us to quickly iterate and peek/poke addresses that we thought contained interesting data Here are some snippets from our experiments:

				
					char instrument = *((char*) 0x20026f01);
write_character(instrument + 0x30 , 0x70, 12, 0);

char most_recent_c = most_recent_note_played;  // is an index form, not the actual note string
write_character(most_recent_c, 0x70, 22, 0);

write_character(notes_played[0x2d - 1], 0x7a, 22, 0);


int button_held = *((int*) 0xd0000004);
// Just copying the Ghidra decomp for these comparisons
// It's easier than thinking about which bit is being checked
if (-1 < (button_held << 0x10)) {
    write_character('U', 0x70, 22, 0);
}
if (-1 < (button_held << 0xf)) {
    write_character('D', 0x70, 22, 0);
}
else if (-1 < (button_held << 0xe)) {
    write_character('L', 0x70, 22, 0);
}
else if (-1 < (button_held << 0xd)) {
    write_character('R', 0x70, 22, 0);
}

				
			

This writes out the index of the currently selected instrument, and below that draws the two most recently played notes.

The characters drawn (“@”, “<“) representing the notes just happen to be ASCII; they are uint8_t indexes in essentially a long array of all possible notes in all octaves, so 84 values. G# in the lowest octave is the first visible “character”, at 0x20 meaning ” ” (space), below this the draw_character function just draws a white rectangle. Then B in the highest octave is the highest byte, 0x6B (“k”). Here “@” and “<” mean the most recent notes played are E and C in the 4th octave.

 

Recall that write_character is a function analyzed from the existing binary, and we can call it and link against it like writing normal C code! This is the power of PatchMaker.

 

At this point we had a good loop: Follow some code and/or data in Ghidra for a while until we think we understand it, then write a C patch to use that knowledge to test our theory. After a little bit, we had found a bitmap at 0x20026eea that seemed to store the info about which keys were currently held; some experiments confirmed this. At this point, we had all the information we needed to write a “Player Piano” for the badge!

 

Step 5: Forward Engineering

 

After all the reverse engineering, there were a few “forward” engineering challenges to consider, so we’ll just rapid fire through them:

 

Timing

We wanted the notes to be audible one after the other, so that meant we had to time them. We didn’t find any timing functions, and probably would not “trust” them even if we did. We decided to just use a counter we would increment each time our function was called (like a C static local variable) and play/increment notes according to that. This meant we needed some R/W space, which we implemented quick & dirty by finding some free scratch space and defining pointers to those as LinkableSymbols.

 

We got the addresses by going to the memory segment we had defined in Ghidra for in-memory RW data, and finding the address at which we stopped seeing references. Luckily this was 0x20026f04, not near an obvious page-end boundary, so we felt reasonably confident we could read/write to it as much as we wanted. Then we defined the LinkableSymbols for it:

				
					FREE_SCRATCH_SPACE = 0x20026f04
...

# Added these to the UpdateLinkableSymbolsModifierConfig shown earlier:

LinkableSymbol(FREE_SCRATCH_SPACE, "counter", LinkableSymbolType.RW_DATA,InstructionSetMode.NONE),
LinkableSymbol(FREE_SCRATCH_SPACE + 0x8, "seq_i", LinkableSymbolType.RW_DATA,InstructionSetMode.NONE),
LinkableSymbol(FREE_SCRATCH_SPACE + 0x10, "state", LinkableSymbolType.RW_DATA,InstructionSetMode.NONE),

				
			

In C we could use those as extern r/w variables:

				
					extern int counter;
extern int seq_i;
extern int state;

...

counter += 1;
    
    
if (counter >= NOTE_PERIOD) {
    seq_i += 1;
    if (seq_i >= (SEQUENCE_LENGTH + REST_COUNT)){
        seq_i = 0;
    }

    counter = 0;
}
else if (counter >= (NOTE_PERIOD - NOTE_HELD_T) && seq_i < SEQUENCE_LENGTH) {
    // write next note here
}

				
			

Storing and writing the sequence

Since the target we needed to write notes to was a bitmap, where each bit is a single note, it made sense to define each note as the bit in the bitmap it was mapped to. This could either be represented as bit index (i.e. 0x3 means “third bit”) or a bit mask (i.e. 0x8 means “third bit” because the third bit is set). In the end we chose bit index because it was more compact, requiring only one byte per note in the 12 notes (plus 3 samples).

				
					typedef enum {
    C = 0,
    C_SHARP = 1,
    D = 2,
    D_SHARP = 3,
    E = 4,
    F = 5,
    F_SHARP = 6,
    G = 7,
    G_SHARP = 8,
    A = 9,
    A_SHARP = 11,
    B = 13,
    SAMPLE_1 = 10,
    SAMPLE_2 = 12,
    SAMPLE_3 = 14,
} note_bit_type;

#define NOTE(bit_idx) (0x1 << bit_idx)
#define CHORD(x, y, z) (NOTE(x) | NOTE(y) | NOTE(z))
				
			

Then, we could store the correct sequence as a constant and iterate over that. The correct sequence could be found in memory (in the octave-offset representation we explained in the earlier Payload section) at address 0x1000dac8 (thanks again to reteps for finding this.) Converted to our C enums:

				
					const note_bit_type note_sequence[] = {
    G, E, D, C, // C@><
    D, E, G, E, // >@C@
    D, C, D, E, // ><>@
    G, E, G, A, // C@CE
    E, A, G, E, // @EC@
    D, C, G, E, // ><C@
    D, C, D, E, // ><>@
    G, E, D, C, // C@><
    D, E, D, E, // >@>@
    G, E, G, A, // C@CE
    E, A, B, G_SHARP, // @EGD
    F_SHARP, E, // B@
};
				
			

Then to write the note:

				
					note_bit_type next_note_bit = note_sequence[seq_i];
notes_held_bitmap |= NOTE(next_note_bit);

				
			

Starting playing the sequence

Initially, we had the sequence play in a loop forever, as soon as the “Play” menu came up.

 

This got a bit annoying. We had already figured out a few of the other inputs we could use to trigger the sequence, and settled on all three of the samples being played at once when in a specific instrument. Then switching out of that instrument would stop the sequence. This was much better for our sanity. We also added some initialization code for the counters, just to be sure they would start at 0. We wrote some specific magic value to one of our scratch variables to keep track of whether the state was initialized or not. A saner alternative would have been to find the initialization/startup code and hook into that, but this was a bit easier.

				
					if (instrument != AUTOPLAY_INSTRUMENT){
    state = 0x0;
    return;
}

int all_3_samples_held = CHORD(SAMPLE_1, SAMPLE_2, SAMPLE_3);

if (state != 0xed){
    if (!((notes_held_bitmap & all_3_samples_held) ^ all_3_samples_held)){
        counter = 0;
        seq_i = 0;
        state = 0xed;
    }
    else{
        return;
    }
}
   

				
			

We arbitrarily chose the violin as the autoplay instrument.

Closing Thoughts

This was good, fun and an exercise in using OFRAK “recreationally.” We, of course, are partial to OFRAK, but it was great scripting everything in Python and having access to a library of very helpful binary analysis and patching functionality.

 

Some future additions that could be done on this badge FW modification:

 

  • Making the autoplayer a separate “instrument” so it shows up on the instrument select screen. It would be a neat trick, but you’d have to stop the badge from thinking it’s an actual instrument and trying to play sounds that don’t exist (there appear to be jump tables for each instrument)
  • Making multiple new instruments for different pre-set tracks
  • Recording sequences of notes as new pre-set tracks at runtime
  • Using the various drawing functions to draw pictures according to the notes played, like a music visualizer

 

All of these would require rather significant additional space, so we would need a way to extend the firmware for sure. Sit tight for an OFRAK Modifier for that!

 

Some sticking points with OFRAK we noticed that got us thinking:

 

  • It bothered us (aesthetically and practically) that we were defining functions and data in two places: The “extern” declarations in source/header, and the LinkableSymbol that actually defined the value. It seems practical and more convenient to define functions along with their type in one place, perhaps just pulling these straight from Ghidra, and have OFRAK creating the declaration and definition without any more user input needed.
  • Managing data sections (both R and RW) through the PatchFromSourceModifier API is a bit impractical. This can always be tricky with PatchMaker, but the Modifier’s API abstracts away the guts that it is unfortunately necessary to bury your hands in to get things working smoothly. For example, we originally tried to used LLVM instead of GNU, but LLVM stubbornly insisted that extern pointers to data had to first be loaded as an indirect pointer from the .rodata section, which pointed to an address in the .bss section, where the address of the variable would hopefully be contained. GNU was happy to just load the variable address directly from the .rodata section. Managing an additional section was more effort than switching toolchains, which is a testament to interoperability and modularity in PatchMaker but a flaw in PatchFromSourceModifier.

 

Perhaps these will become pull requests you’ll see landing in core OFRAK shortly 🙂

 

Hope you enjoyed our work!  Maybe next you can build something else cool on top of the badge!

 

— Edward Larson & Jacob Strieb

 

]]>
7215